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Abstract 

The alloy Cq,Zr,, crystallizing from the amorphous state was examined calorimetrically. 
The theory used for the description of the energy release is based on a Markov process that 
allows the description of static and dynamic (re-jzrystallization. The Markov model is used in 
a simplified form as a differential equation, together with a transition probability derived 
from the classical theory of Johnson, Mehl, Avrami and Kolmogorov. The Avrami parameters 
are determined from isothermal experiments. It is shown that the slopes in the Avrami plot 
should be determined for low degrees of crystallization in order to obtain good agreement 
between theory and experiment. Additionally, the crystallization process is characterized by a 
temperature-dependent incubation time that has to be included in the model. It is finally 
shown that non-isothermal processes can be calculated with sufficient accuracy from the 
isothermal results, demonstrating that the Markov model gives a physically meaningful 
description of crystallization. 

INTRODUCTION 

The metallic glass Co,,Zr 67 crystallizes at temperatures above about 669 
K (396 o C) into a nanocrystalline structure. The isothermal and non-isother- 
mal crystallization process, the latter at a constant heating rate, was ob- 
served calorimetrically, giving as experimental output 

JW = WJ%tor (1) 

where I? is the rate of energy release, t is the time, A is the time derivative 
of the degree of crystallization, x, and Es,, is the stored energy that is 
released on crystallization. From eqn. (l), the degree of crystallization is 
derived 

40 = W/L* (2) 

The degree of crystallization characterizes the transformation process. The 
discussion of experimental results is in general done with the theory of 
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Johnson, Mehl, Avrami and Kohnogorov (JMAK) [l], which determines x 
from 

x(t) = 1 - exp( -at”) (3) 

where (Y and n are empirical parameters that have to be adapted to the 
experimental data. In an Avrami plot, log 1 - In 11 - x 11 versus log I t I, n is 
ideally the slope of a linear curve when isothermal data are used. The 
transformation of eqn. (3) from isothermal to non-isothermal processes is 
still under discussion (for example by Schmidt [2]). Very often, systematic 
deviations from the JMAK theory occur in the last half or third of the 
process, where the real process is in most cases slower than predicted by the 
JMAK theory (see for example Schonborn and Haessner [3]). 

In this paper, a model for recrystallization and crystallization based on a 
Markov process (GSbel [4]) is used for the quantitative description of the 
crystallization processes observed on Co,,Zr,,. The Markov model is re- 
duced to a single differential equation and provided with a transition 
probability (TP) that behaves according to the theory of JMAK. Thus, both 
models and their results can be compared. Pursuing the concept of the 
Markov model, a strategy is developed for parameter fitting that is different 
from the classical proceedings based on the Avrami plot, but gives nonethe- 
less very convincing and good results. For Cq,Zr,,, the experimental curves 
in the Avrami plot are highly non-linear (Fig. l(a)) so that the determination 
of a single slope is a problem. Moreover, not only is the parameter (Y in eqn. 
(3) temperature dependent, but so also is n. The crystallization process has 
an incubation time which distorts the curves in the Avrami plot (cf. Fig. l(a) 

Fig. 1. Avrami plots for the experimental data at T= 669 K: (a) classical Avrami plot; (b) 
time-transformed Avrami plot with the incubation time t *. 
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with Fig. l(b)). Finally, there are deviations between experimental results 
and the JMAK theory for the last 30% of the process (cf. Fig. 6(c)), which 
can be taken account of by the Markov model by introducing an additional 
transition probability for processes not included in the JMAK theory. After 
having determined the parameters of the crystallization process from iso- 
thermal experiments, non-isothermal experiments can be predicted very well 
by the Markov model. The most striking feature of the process is that it does 
not depend on the temperature gradient, but only on the actual temperature. 
A Markov process, as it has no memory, cannot react on time-dependent 
gradients, and thus it is an adequate mathematical model for a crystalliza- 
tion process. 

In the present paper, firstly the experiments are described. In the follow- 
ing section, the Markov model is introduced and compared with the JMAK 
theory. The next section deals with the determination of the Avrami parame- 
ters (Y and n of eqn. (3), the incubation time, and the transition probability 
that corrects the JMAK behaviour. The classical methods of parameter 
determination for the JMAK theory are compared with the methods devel- 
oped here using the Markov model. In the last section, the results of 
non-isothermal calculations are compared with experimental results. 

EXPERIMENTAL 

Calorimetric measurements were used to study the crystallization reaction 
of the metallic glass Co,,Zr,,. Amorphous ribbons of the material were 
prepared by melt spinning in vacuum (carried out at the “Kristallabor der 
physikalischen Institute” at the University of Gijttingen) and studied by 
X-ray diffraction and transmission electron microscopy investigations. After 
cleaning the Co,,Zr,, ribbons in an ultrasonic bath with methanol, they 
were sealed into aluminium pans or Duran glass containers under vacuum in 
order to prevent oxidation of the sample surfaces. During the calorimeter 
run the measurement cells were flushed with an inert gas. 

The course of crystallization was followed by two different types of 
calorimeter, a differential scanning calorimeter (Perkin-Elmer DSC7) and a 
differential heatflux calorimeter (MCB Thermalanalyse, Grenoble). The first 
was used in the isothermal mode and the second only in the isochronal 
mode. 

Both measuring systems allow digital data registration and therefore 
evaluation with personal computer. The measured signals were always 
corrected using a de-smearing algorithm [5]. 

THE MARKOV MODEL 

The basic model is a Markov process 

zt+~t = Mz, (4) 
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where zI is the distribution of flow units at time step t, and M is the 
stochastic matrix. The Markov model is explained in detail by Gtibel[4] or, 
without recrystallization, by Steck [6]. It describes the movement of flow 
units along a scale of internal stresses by TPs of hardening, recovery and 
recrystallization. The site of the flow units on the scale of internal stresses 
characterizes the actual state of the material. The TPs of hardening and 
recovery can move flow units one step on the scale of internal stress in the 
forward and backward directions, whereas the TP of hardening moves flow 
units in the forward direction and the TP of recovery moves them back- 
wards. The TPs of recrystallization bring back the flow units into the region 
of the internal stress scale where they started out initially, thus describing 
the transformation of a distorted into an undistorted material, as is the case 
in recrystallization. 

If only one class of internal stress is considered to characterize the 
undistorted state, and if the TP of recrystallization is assumed to be 
independent of the internal stresses, and if hardening and recovery are 
neglected (as can be done for static processes), the Markov process reduces 
to a single differential equation (map) 

X t+& = xt + (1 - x,)R(xt,Vt (5) 
where x, is the degree of crystallization at time step t, R(x,,T) is the TP of 
crystallization (which has to be determined as a function of x, and tempera- 
ture T) and St is a time increment. The degree of crystallization in eqn. (5) 
has been derived from the ratio of flow units in the undistorted state and the 
total number of flow units. 

If the TP of crystallization is chosen, for example, as 

R (x,) = A/&x, 

eqn. (5) becomes identical with the logistic map, where for sufficiently high 
values of A/&, deterministic chaos occurs. This kind of behaviour has not 
been observed during crystallization or recrystallization. It does not make 
physical sense; therefore it is assumed that eqn. (5) can be transformed into 
a differential equation, without losing physically relevant information, to 
give 

i = (1 - x)R(x,T) (6) 

Equation (6) provides a general description of the crystallization process, 
where only the function of the TP has to be determined. In order to stay in 
contact as far as possible with the JMAK theory, the TP will be chosen by 
analogy with the JMAK theory, so that in the isothermal case eqns. (6) and 
(3) give the same results. 

In the JMAK theory it is assumed that grain or crystal nuclei are 
distributed statistically and that grains or crystals are growing independently 
from each other. Impingement of grains or crystals is possible, leading to an 
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extended volume and extended degree of (re-)crystallization, xext, that has to 
be transformed into the real degree of (re-)crystaUzation using 

dx = (1 - x) dxeXt (7) 

A comparison of eqn. (7) with eqn. (6) of the Markov model shows that 

R ext = h‘&J) (8) 

Integration of eqn. (7) and comparison of the result with eqn. (3) yields 

X ext = at” (9 

The time derivative of eqn. (9) is as follows: 

Li’,X, =K,(-InIl -xI)~’ 

+i.-lnJ1-xJ K; 

i 
-- 

l-K, Kl j-$+K; lnl-lnll-xl1 
) 

(loa) 

where 

Kl = a”‘% and K, = (n - 1)/n (lob) 

K,‘= dK,/dT and K,‘= dK,/dT 004 

2.5 

T 
Y I 

Fig. 2. Influence of the Avrami parameter n or K, on the TP derived from the JMAK theory 
(eqn. (lOa) for Y= 0). 
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For isothermal processes, the temperature derivatives are equal to zero, so 
that only the first part of eqn. (10a) has to be used. In fact, the second part 
of eqn. (1Oa) is irrelevant for the TP of crystallization. This will be shown in 
the non-isothermal calculations. 
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Fig. 3. Temperature dependence of the Avrami parameter (a) K,, and (b) its temperature 
compensated form, K,"". 
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DETERMINATION OF 

Avrami parameters 

PROCESS PARAMETERS 

The Avrami parameters, a and n in eqn. (3) or K, and K, in eqn. (lo), 
are determined from isothermal experiments, not by an Avrami plot but by 
a different strategy. As according to experience the JMAK theory describes 
the first two-thirds of the transformation process sufficiently well, emphasis 
is put on fitting R(x,T), especially to this region of x. 

Figure 2 demonstrates the influence of K, on the TP of crystallization 
(eqn. (1Oa) for p= 0). Equation (10a) shows that for -In 11 - x 1 = 1, i.e. 
x = 0.63212, K, has no influence on the TP of crystallization. Thus, K, is 
determined easily at x = 0.63 from eqn. (6). Figure 3 shows the temperature 
dependence of K, and its temperature-compensated form 

KiTC) = K, exp( Q/IV) 

Fig. 4. Temperature dependence of K, according to experiment (cf. eqn. (11)) for two 
temperatures. 
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where Q is the activation energy of the whole crystallization process as 
determined experimentally, R is the gas constant and Q/R = 44379.232 K. 
There is a small linear dependence of KiTc) on the temperature, leading to 
the empirical relationship 

K[Tc’ = K,, + I&T 

n 
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Fig. 5. Temperature dependence of (a) K,, and (b) n at different degrees of crystallization: W, 
x = 0.05; A, X = 0.9: - K2 and n according to the classical Avrami method leading to 
meanvaluesforK2andn;r---- -, K, fitted to the data points of x = 0.05. 
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with K,, = - 1.036 046 905 657 23 X 102* and K,, = 1.967 796 100 477 53 X 

10” K-i, when fitted to the data by a least-squares procedure. With K, 
given, an estimate of K, can be calculated by solving eqn. (1Oa) for K2: 

K 
2 

= lnIVK1(1-X)I 
In]-ln]l-xl] (11) 

In Fig. 4, the results of eqn. (11) are drawn for two temperatures. The 
mathematical discontinuity at x = 0.63 is only partly reflected by the data 
because the data points have not been recorded densely enough. Figure 5(a) 
shows the temperature dependence of K, for different values of x: for small 
x, K, increases with temperature, whereas for large x it decreases. Increas- 
ing K, below x = 0.63 means a decreasing TP, decreasing K, above 
x = 0.63 results in a decreasing TP as well, so that, as far as K, or-n is 
concerned, the TP would decrease with increasing temperature. In any case, 
K, is a linear function of temperature. 

Proceeding in the classical way by fitting the data in an Avrami plot to a 
linear curve between x = 0.1 and 0.95 leads to a mean value of n, which is 
also shown in Fig. 5. 

In order to fit K, to the data, K,(T) at x = 0.05 was taken as a first 
estimate, fitted more closely but only qualitatively at the lowest and highest 
temperatures of the experiments (T = 669 K and 698 K). The temperature 
dependence inbetween was interpolated linearly, leading to 

K, = K,, + K,,T 02) 

with K,, = - 1.612 21 and K,, = 3.22244 X low3 K-i. 
When using data at low values of x, it had to be checked whether the 

initial disturbance had already decayed. It can be seen from the output of 
the calorimeter that this is the case already at x = 0.01, so that it is fully 
justified to fit parameters to the lower range of x. Figures 6(a) and 6(c) show 

the TP, R,,,, over x, for two different temperatures, where the TP has 
been calculated from experimental data according to eqn. (6). Inserting 
a(T) and n(T), determined from K,(T) and K2( T) by eqn. (lOa), into eqn. 
(3) leads to the results shown in Fig. 7. The value of n obtained from the 
classical method gives a good average description of the process, but it can 
be clearly seen that the shape of the k-t curve deviates from the experimen- 
tal one: the process accelerates too slowly. The I-t curve with the K, from 
eqn. (12) has the right shape, but the real process does not begin until after a 
time delay. This proves the findings of Giibel[4] that obtaining a good fit of 
the data for a plot of TP vs. x leads to a good description of the whole 
process (cf. Fig. 7(c)), but this also means that the delay time has to be 
included in the model as an additional variable. 

Incubation time 

The delay or incubation time t * is the time at which the calorimeter gives 
the first stable signal. Physically, this means that the crystallization reaction 
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difference between measured and calculated TP; (c) as in (a), for T = 698 K; (d) as in (b), for 
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Fig. 8. Temperature dependence of the incubation time: (a) linear plot; (b) logarithmic plot 
vs. T-', where the slope of a linear curve gives the activation energy of an Arrhenius model. 

has just begun. Figure 8(a) shows that the incubation time decreases with 
increasing temperature, and that it has a non-linear dependence on tempera- 
ture. It is assumed that the incubation time is determined by a thermally 
activated process. Thus, a plot of ln 1 t * 1 vs. l/T should give a linear 
function of the data. Figure 8(b) shows that the data points either lie very 
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much scattered, or that the process is not simple. Fitting the data points of 
Fig. 8(b) to the empirical function 

1 1 
t* - t, 

-7.exp(-gf) 03) 

leads to Q */R = 78 545.4539 K, which is almost twice the activation energy 
of the u.hole crystallization process. Omitting the data point at T = 698 K 
gives an activation energy that is of the same order of magnitude as Q/R, 
with Q */R = 52 830.955 K. 

Consequently, it might be more appropriate to determine a temperature 
dependent activation energy, where Q* increases with the temperature (cf. 
Fig. 9(d)). A similar relationship has been derived for the activation energies 
of creep by Tegart and Sherby [7]. They explain the rise in activation energy 
by the contributions of two parallel processes (see Fig. 9(b)), leading to 

Q = wlQi exp( - QdRT) + wzQz exd - Q#T> 

wl exp( - QdRT) + w2 exd - QJRT) 
(144 

where the activation energies of the partial processes follow from their strain 
rates 

1r = wr exp( - Q/RT) and i, = w, exp( - QJRT) ow 

The total strain rate is the sum of the partial strain rates. Here, the strain 
rate has to be replaced by the inverse of the incubation time, according to 
eqn. (13). For T + 00, it follows from eqn. (14a) that 

while at low temperatures only one process makes a contribution, for 
example leading to 

Qz/Q,sQ* 
(144 

Hence it follows from eqn. (14~) for Qz, = m Q&, that 

Q,=Q*[m+(m-h/w,] 044 
The ratio wI/wz is estimated by estimating the transient values of tempera- 
ture and activation energy, T and Q:, inserting both into eqn. (14a) and 
solving it for wz/wl. With 

Q:=A*Q* 

it follows for wz/wl > 0 

w2 m-A* 
-= A*_l exp 
Wl 

-g m ( -l)] 04f) 

Submitting the experimental data to this procedure leads to the following set 
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Fig. 9. Temperature dependence of the activation energy for the incubation time: (a) 
Comparison between the experimental and the calculated values. The experimental data of 
Q* were obtained from Fig. 10(b): Q& was estimated from the slope between the second 
and last data point. Q&, is the slope between the two fist data points. The theoretical curve 
was obtained with Q& = 56 148.936 K, A* = 6.6, T, = 695 K, m = 9.9106. (b) Additional 
contributions of two processes to the activation energy, shown schematically for linear 
functions, leading to an increase in the activation energy with increasing temperature. 

of parameters: Q&,/R = 56 148.94 K; m = 9.91; A* ,= 6.60; T = 695.00 K. 
Figure 9(a) shows that the experimental results are described very well. 

After the temperature dependence of the incubation time has been 
determined, the latter has to be related to the TP of crystallization. The 
delay time is considered by an additional TP 

Rinc = l- exp( -x/x,,) (15) 
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that varies between zero, at x = 0, and unity, when x is large; x0 is a 
function of the incubation time. 

It is assumed that the crystallization process is impeded at small values of 
x by a second process related to, for example, the stabilization of crystal 
nuclei. This leads to a multiplication of the TPs from eqns. (1Oa) and (15): 

R(G) =&MA, (x,T) ‘Ri,(x,T) (16) 

The product of two probabilities expresses the probability of an event 
that takes place when two separate events are realized. When tossing a coin, 
for example, the probability of tossing heads after tails is equal to the 
product of the probabilities of tossing heads and tails, respectively. 

The TP of eqn. (16) is equal to zero for x = 0. Thus, with eqn. (6), the 
crystallization process could not start at all. The random fluctuations that 
cause the process to start in reality also have to be introduced. This is done 
by a small constant, R, or R, exp( -x/x,), which is added to eqn. (16). It is 
calculated as R, = 1 x 10M8 min-‘, because for this value there are no 
considerable differences between the results from eqns. (3) and (6) and the 
JMAK TP of eqn. (lOa). Calculating with a decreasing TP of fluctuations, 
R, exp( - x/x,), assumes that the number of sites favourable for the crea- 
tion of crystal nuclei decreases with increasing x. The differences between 
the two TPs for fluctuations are small. 

The entire differential equation for the crystallization thus runs as fol- 
lows: 

~=(l-x)(K,[-lnll-xl]Kz[l - exp(-x/x,)] + & exp(-x/x,)) 

(17) 

Equation (17) was integrated while x0 was changed until the result was near 
the experimental incubation time. Figure 10(a) shows that x0 and t* are 
proportional to each other: x0 = @,t* with Q, = 3.373 x 10e6 mm-‘. In Fig. 
10(b), x0 is drawn in a logarithmic plot to show its dependence on l/T and 
thus its activation energy. 

When the incubation time is included in the Avrami plot, drawing 
log(-InIl-xl) vs. log( t - t *), the data form a sequence of linear sections 
(cf. Fig. l(b)). Determining n from the time-transformed Avrami plot for 
small values of x gives about the same results as determining n from the 
plot of the TP vs. x. 

Correcting the TP of JMAK 

In Figs. 6(b) and 6(d), the difference S between measured and JMAK TP 
is drawn: 

. 

a= I”, -RJMAK (18) 
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Fig. 11 
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(continued). 

This shows that in the last third of the process, deviations between experi- 
mental and JMAK behaviour occur. At the lowest temperature, T = 669 K, 
the process accelerates when compared with the theory, whereas at the 
highest temperature the process is considerably slower than predicted. The 
correcting TP, eqn. (18), is determined using an empirical function 

S(T) =A(T){exp[B(T)x] -l} (19) 

where A and B are temperature-dependent parameters that have to be fitted 
to the experimental data. Equation (19) gives S = 0 at x = 0, so that it does 
not contribute to initial fluctuations. Parameters A and B were roughly 
estimated for T = 669 K and 698 K by the approximate function 

S =A exp(Bx) (19a) 

where the error between eqns. (19) and (19a) is small for small A and large 
B. Then the temperature dependence of A and B was interpolated by the 
linear functions 

A =A,+A,T 

with A, = 3.447 x 1O-3 and A, = -5.153 x lo+ K-‘, and 

B = B, -I- B,T 

with B, = -137.053 and B, = 0.2095 K-l. 
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In Fig. 11, the results for different TPs can be compared. Figure 11(b) 
shows the JMAK TP of eqn. (10a) with T = 0. In Fig. 11(c), the corrected 
TP 

R=R,,,+6 (20) 

is drawn, together with some of the experimental data points. It can be seen 
that A and/or B are probably not linear functions of the temperature, but 
as a matter of fact the last curve (T = 698 K) is described very well by the 
corrected TP. 

The physical reasons for deviations from JMAK behaviour can only be 
guessed. The stochastic rules admit three possibilities for the additional 
component in the TP of crystallization (eqn. (20)). An event means a 
contribution to crystallization by whatever process. 

(a) The two events are stochastically disjunct: the two processes are 
alternatives happening independently of each other so that S = R,. 

(b) The two events are stochastically independent: The two processes do 
not influence each other, but they overlap in the event space so that 

6 = R,, - R,WC x 4,. 
(c) The two events are neither stochastically disjunct nor independent: 

this is the least-restricted case with 6 = R,, - R( EJMAK f~ EC,), where E 
stands for event. 

For cases (a) and (b), knowing RJm, and S leads to the determination of 
R coTT, which may help in discussing the kinetics of the crystallization 
process. 

NON-ISOTHERMAL PROCESSES 

Isothermal processes are very convenient for theoretical considerations 
but they are difficult to perform experimentally. Thus, non-isothermal 
processes performed at constant heating rate are of growing interest for 
experiments. For the Markov model, after having determined the tempera- 
ture dependence of all parameters, only a differential equation for the 
temperature has to be introduced in addition to eqn. (17): 

~=(l-~H]%N +6]Rinc+Ro exp(--x/x,)} (21a) 

F=H cw 

where H is the heating rate. The TPs and x0 are functions of temperature. 
In the cases of linear temperature dependence, negative values of K,, K2 
and B are avoided by cutting off the negative parts, replacing them by zero. 
Thus, at low temperatures the TPs of crystallization are zero (which is 
physically convincing). For the JMAK-correcting TP, a maximum value for 
B had to be fixed. Once this value has been reached at T = 698 K it stays 
constant because, otherwise, negative TPs would occur. Another problem 
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Fig. 12. Comparison between theory and experiment for non-isothermal crystallization. 

was the calculation of Q*(T) at low temperatures, where Q* and x0 
approach infinity, so that numerical values that leave the numerical range of 
the computer must be avoided. 

Calculations for non-isothermal processes have been performed for differ- 
ent TPs and parameters. There are two important cases: (a) JMAK TP 
without temperature gradient (eqn. (loa)); (b) no JMAK correction (6 = 0). 

The TP for the delay time Rhc as well as the TP for random fluctuations 
are always included. Figure 12 compares an experiment with calculations for 
different assumptions on the TPs. The best results are achieved with omis- 
sion of both, the temperature gradient as well as the JMAK correction in the 
TP for crystallization. Moreover, the consideration of a temperature-depen- 
dent activation energy for the incubation time did not improve the results 
appreciably. It is fully sufficient to operate with a constant activation energy 
Q *. Hence, the best results are achieved with the simplest of models. 
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Having a JMAK TP without a temperature gradient, although this gradi- 
ent would be mathematically correct, means that the physical system reacts 
only to the actual temperature. It does not sense a temperature gradient. 
Although the heating rate is not particularly slow, the system acts as if it is 
in a quasi-static process. A very convincing explanation of this behaviour is 
[8] that Markov processes have no memory but react to a given state only. 
Thus, these systems cannot detect time gradients because they would have to 
know what was happening in the last time step, or they would have to 
anticipate what is going to occur in the next one. It can thus be concluded 
that a Markov process is an appropriate means of describing crystallization. 

CONCLUSIONS 

The intention of this paper is to provide help in handbook style for 
analysing calorimetric data on (re-)crystallization. It has been shown for the 
Co-Zr alloy investigated here that the value of the Avrami parameter n 
depends on the method of determination. The methods developed here for 
the determination of the Avrami parameters a and n have the advantage of 
describing the experimental data far better than is done by parameters 
determined by the classical method. As in the material investigated here, the 
crystallization process is preceded by a temperature-dependent incubation 
time, a third process variable had to be determined additionally. A mini- 
mum of seven constants (Q, K,,, Krz, Kzr, Kz2, Q* and at,*) is then 
sufficient to calculate isothermal as well as non-isothermal processes with 
tolerable accuracy. 

The calculations of the non-isothermal process show that the crystallizing 
material has Markov properties, i.e. it does not react to temperature gradi- 
ents but only to actual temperatures. Thus, it becomes theoretically clear 
how to connect isothermal with non-isothermal crystallization. 

Besides a quantitative description of the crystallization process, the sec- 
ond objective behind our analysis of calorimetric data is the discussion of 
the reaction kinetics. This will be done in a forthcoming paper. 
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